
Parallel-Beam Backprojection: an FPGA Implementation
Optimized for Medical Imaging

Srdjan Coric, Miriam Leeser, Eric Miller
Department of Electrical and Computer Engineering

Northeastern University
Boston, MA 02115

{scoric, mel, elmiller}@ece.neu.edu

Marc Trepanier
Mercury Computer Systems, Inc.

Chelmsford, MA 01824

mtrepanier@mc.com

ABSTRACT
Medical image processing in general and computerized
tomography (CT) in particular can benefit greatly from hardware
acceleration. This application domain is marked by
computationally intensive algorithms requiring the rapid
processing of large amounts of data. To date, reconfigurable
hardware has not been applied to this important area. For efficient
implementation and maximum speedup, fixed-point
implementations are required. The associated quantization errors
must be carefully balanced against the requirements of the
medical community. Specifically, care must be taken so that very
little error is introduced compared to floating-point
implementations and the visual quality of the images is not
compromised. In this paper, we present an FPGA implementation
of the parallel-beam backprojection algorithm used in CT for
which all of these requirements are met. We explore a number of
quantization issues arising in backprojection and concentrate on
minimizing error while maximizing efficiency. Our
implementation shows significant speedup over software versions
of the same algorithm, and is more flexible than an ASIC
implementation. Our FPGA implementation can easily be adapted
to both medical sensors with different dynamic ranges as well as
tomographic scanners employed in a wider range of application
areas including nondestructive evaluation and baggage inspection
in airport terminals.

1. INTRODUCTION
This paper presents the implementation of parallel beam
backprojection on reconfigurable hardware. This represents the
first study applying reconfigurable hardware techniques to
medical image processing applications. Tomography refers to the
process that generates a cross-sectional or volumetric image of an
object from a series of projections collected by scanning the
object from many different directions [6]. It is applied in
diagnostic medicine, baggage inspection, industry, astronomy, and
geology. Projection data acquisition can utilize X-rays, magnetic
resonance, radioisotopes, or ultrasound. The discussion presented

here pertains to the case of two-dimensional X-ray absorption
tomography. In this type of tomography, projections are obtained
by a number of sensors that measure the intensity of X-rays
travelling through a slice of the scanned object. The radiation
source and the sensor array rotate around the object in small
increments. One projection is taken for each rotational angle. The
image reconstruction process uses these projections to calculate
the average X-ray attenuation coefficient in cross-sections of a
scanned slice. If different structures inside the object induce
different levels of X-ray attenuation, they are discernible in the
reconstructed image.

The most commonly used approach for image reconstruction
from dense projection data (many projections, many samples per
projection) is filtered backprojection (FBP). Depending on the
type of X-ray source, FBP comes in parallel-beam and fan-beam
variations [6]. In this paper, we focus on parallel-beam
backprojection, but methods and results presented here can be
extended to the fan-beam case.

FBP is a computationally intensive process. For an image of
size n × n being reconstructed with n projections, the complexity
of the backprojection algorithm is O(n3). There is another
algorithm whose complexity is on the order of n2log2n [3];
however, its suitability for hardware implementation has not yet
been investigated. Image reconstruction through backprojection is
a highly parallelizable process. Such applications are good
candidates for implementation in FPGA devices since they
provide fine-grained parallelism and the ability to be customized
to the needs of a particular implementation. We have implemented
backprojection by making use of these principles and shown
approximately 20 times speedup over a software implementation
on a 1GHz Pentium. Our architecture can easily be expanded to
newer and larger FPGA devices further accelerating image
generation by extracting more data parallelism.

Another difficulty of implementing FBP is that producing
high-resolution images with good resemblance to internal
characteristics of the scanned object requires that both the density
of each projection and their total number be large. This represents
a considerable challenge for hardware implementations, especially
in terms of required data transfer rates. Therefore, it can be
beneficial for fixed-point implementations to optimize the bit-
width of a projection sample to the specific needs of the targeted
application domain. We show this for medical imaging, which
exhibits distinctive properties in terms of required fixed-point
precision.

Finally, medical imaging requires high precision
reconstructions since visual quality of images must not be
compromised. We have paid special attention to this requirement

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGA’02, February 24-26, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-452-5/02/0002…$5.00.

by carefully analyzing the effects of quantization on the quality of
reconstructed images. We have found that a fixed-point
implementation with properly chosen bit-widths can give high
quality reconstructions and, at the same time, make hardware
implementation fast and area efficient. Our quantization analysis
investigates algorithm specific and also general data quantization
issues that pertain to input data. Algorithm specific quantization
deals with the precision of spatial address generation including the
interpolation factor, and also investigates bit reduction of
intermediate results for different rounding schemes. In the next
section, we present the backprojection algorithm in more detail. In
section 3 we present our quantization studies and analysis of error
introduced. Section 4 presents the hardware implementation in
detail. Finally we present results and related work.

2. PARALLEL-BEAM FILTERED
BACKPROJECTION

A parallel-beam CT scanning system uses an array of equally
spaced unidirectional sources of focused X-ray beams. Generated
radiation, not absorbed by the object’s internal structure, reaches a
collinear array of detectors (Figure 1a). Spatial variation of the
absorbed energy in the two-dimensional plane through the object
is expressed by the attenuation coefficient µ(x, y). The logarithm
of the measured radiation intensity is proportional to the integral
of the attenuation coefficient along the straight line traversed by
the X-ray beam. A set of values given by all detectors in the array
comprises a one-dimensional projection of the attenuation
coefficient, P(t, θ), where t is the detector distance from the origin
of the array, and θ is the angle at which the measurement is taken.

A collection of projections for different angles over 180° can be
visualized in the form of an image in which one axis is position t
and the other is angle θ. This is called a sinogram or Radon
transform of the two-dimensional function µ, and it contains
information needed for the reconstruction of an image µ(x, y). The
Radon transform can be formulated as

() () ()θθθδµ ,sincos,log 0 tPdxdytyxyx
I
I

d
e ≡−+= ∫∫ (1)

where Io is the source intensity, Id is the detected intensity, and
δ(·) is the Dirac delta function. Equation (1) is actually a line
integral along the path of the X-ray beam, which is perpendicular
to the t axis (see Figure 1a) at location t = xcos θ + ysin θ. The
Radon transform represents an operator that maps an image µ(x, y)
to a sinogram P(t, θ). Its inverse mapping, called the inverse
Radon transform, when applied to a sinogram results in an image.
The filtered backprojection (FBP) algorithm performs this
mapping [6].

FBP begins by high-pass filtering all projections before they
are fed to hardware using the Ram-Lak or ramp filter, whose
frequency response is | f |. The discrete formulation of
backprojection is

(), sin cos) ,(
1

ii

K

i

yx
K

yx
i

θθΠµ θ +
π

= ∑
=

(2)

where Πθ(t) is a filtered projection at angle θ, and K is the number
of projections taken during CT scanning at angles θi over a 180°
range. The number of values in Πθ(t) depends on the image size.
In case of n × n pixel images, nDN 2= detectors are required.
The ratio D = d/τ, where d is the distance between adjacent pixels
and τ is the detector spacing, is a critical factor for the quality of

(a) (b)
Figure 1: a) Illustration of the coordinate system used in parallel-beam backprojection, and b) geometrical

explanation of the incremental spatial address calculation

Detector array

y

x

s

t

θ

xp

yp
p

s
p

t p

Source array

yp

xp

p

t p

d

R p

∆t

θ

Pixel

θ

d
θ

y

x

t

∆t

the reconstructed image and it obviously should satisfy D > 1. In
our implementation, we utilize values of D ≈ 1.4 and N = 1024,
which are typical for real systems. Higher values do not
significantly increase the image quality.

Algorithmically, Eq. (2) is implemented as a triple
nested “for” loop. The outermost loop is over projection angle, θ.
For each θ, we update every pixel in the image in raster-scan
order: starting in the upper left corner and looping first over
columns, c, and next over rows, r. Thus, from (2), the pixel at
location (r,c) is incremented by the value of Πθ(t) where t is a
function of r and c. The issue here is that the X-ray going through
the currently reconstructed pixel, in general, intersects the detector
array between detectors. This is solved by linear interpolation.
The point of intersection is calculated as an address corresponding
to detectors numbered from 0 to 1023. The fractional part of this
address is the interpolation factor. The equation that performs
linear interpolation is given by

() () ()[] () , 1int iIFiii θθθθ ΠΠΠΠ +⋅−+= (3)

where IF denotes the interpolation factor, Πθ(t) is the 1024
element array containing filtered projection data at angle θ, and i
is the integer part of the calculated address. The interpolation can
be performed beforehand in software, or it can be a part of the
backprojection hardware itself. We implement interpolation in
hardware for two reasons. First, this substantially reduces the
amount of data that must be transmitted to the reconfigurable
board. Second, interpolation in hardware is much faster, thus
speeding up the reconstruction process.

The key to an efficient implementation of Equation (2) is
shown in Figure 1b. It shows how a distance d between square
areas that correspond to adjacent pixels can be converted to a
distance ∆t between locations where X-ray beams that go through
the centers of these areas hit the detector array. This is also
derived from the equation t = xcos θ + ysin θ. Assuming that
pixels are processed in raster-scan fashion, then ∆t = dcos θ for
two adjacent pixels in the same row (x2 = x1 + d) and similarly ∆t
= dsin θ for two adjacent pixels in the same column (y2 = y1 - d).
Our implementation is based on pre-computing and storing these
deltas in look-up tables. Three LUTs are used corresponding to
the nested “for” loop structure of the backprojection algorithm.
LUT 1 stores the initial address along the detector axis (i.e. along
t) for a given θ required to update the pixel at row 1, column 1.
LUT 2 stores the increment in t required as we increment
columns. LUT 3 stores the increment for columns

3. QUANTIZATION
We quantize all our data and calculations to increase the speed
and decrease the resources required for implementation.
Determining allowable quantization is based on a software
simulation of the tomographic process. Figure 2 shows the major
blocks of the simulation. An input image is first fed to the
software implementation of the Radon transform, also known as
reprojection [5], which generates its sinogram of 1024 projections
and 1024 samples per projection. The filtering block convolves

sinogram data with the impulse response of the ramp filter
generating a filtered sinogram, which is then backprojected to
give a reconstructed image. We compute the quantization error by
comparing a fixed-point image reconstruction with a floating-
point one.

All values in the backprojection algorithm are real numbers.
These can be implemented as either floating-point or fixed-point
values. Floating-point representation gives increased dynamic
range, but is significantly more expensive to implement in
reconfigurable hardware, both in terms of area and speed. For
these reasons we have chosen to use fixed-point arithmetic. An
important issue, especially in medical imaging, is how much
numerical accuracy is sacrificed when fixed-point values are used.
Here, we present the methods used to find appropriate bit-widths
for maintaining sufficient numerical accuracy. In addition, we
investigate possibilities for bit reduction on the outputs of certain
functional units in the datapath for different rounding schemes,
and what influence that has on the error introduced in
reconstructed images. Our analysis shows that medical images
display distinctive properties with respect to how different
quantization choices affect their reconstruction. We exploit this
and customize quantization to best fit medical images.

Fixed-point variables in our design use a general slope/bias-
encoding, meaning that they are represented as

, BQSVV a +=≈ (4)
where V is an arbitrary real number, Va is its fixed-point
approximation, Q is an integer that encodes V, S is the slope, and
B is the bias. Fixed-point versions of the sinogram and the filtered
sinogram use slope/bias scaling where the slope and bias are
calculated to give maximal precision. The quantization of these
two variables is calculated as:

() ()
() ()

() ()
,

12
minmax

minmax
minmax

−
−

=
−
−

=
ws

VV
QQ
VV

S (5)

() () () (),minminor maxmax QSVBQSVB ⋅−=⋅−= (6)

, 





 −

=
S

BV
roundQ (7)

where ws is the word size in bits of integer Q, and round
represents rounding to nearest. Since sinogram data are unsigned
numbers, in their case min(V) = min(Q) = B = 0. The interpolation
factor is an unsigned fractional number and uses radix point-only
scaling. Thus, the quantized interpolation factor is calculated as in
Eq. (7), with saturation on overflow, with S = 2-E where E is the
number of fractional bits, and with B = 0.

For a given sinogram, S and B are constants and they do not
show up in the hardware – only the quantization value Q is a part
of the hardware implementation. Note that in Eq. (3), two data
samples are subtracted from each other before multiplication with
the interpolation factor takes place. Thus, the bias B is eliminated
from the multiplication, which makes quantization of filtered
sinogram data with maximal precision scaling easily
implementable in hardware.

The next important issue is the metric used for evaluation of
the error introduced by quantization. Our goal was to find a metric
that would accurately describe visual differences between

Figure 2: Major simulation steps

compared images regardless of their dynamic range. If 8-bit and
16-bit versions of a single image are reconstructed so that there is
no visible difference between the original and reconstructed
images, the proper metric should give a comparable estimate of
the error for both bit-widths. The proper metric should also be
insensitive to the shift of pixel value range that can emerge for
different quantization and rounding schemes. Absolute values of
single pixels do not effect visual image quality as long as their
relative value is preserved because pixel values are mapped to a
set of grayscale values. The error metric we use that meets these
criteria is the Relative Error (RE):

() ()[]

()
,

1

2

1

2

∑

∑

=

=

−

−−−

=
N

i

FPFP
i

N

i

FPFP
ii

yy

yyxx

RE (8)

Here, N is the total number of pixels, xi and yi
FP are the values of

the i-th pixel in the quantized and floating-point reconstructions
respectively, x and FPy and are their means. The mean value is
subtracted because we only care about the relative pixel values.

Figure 3 shows some characteristic images from a larger set
of 512-by-512-pixel images used as inputs to the simulation
process. All images are monochrome 8-bit images, but 16-bit
versions are also used in simulations. Each image was chosen for
a certain reason. For example, the Shepp-Logan phantom is well
known and widely used in testing the ability of algorithms to
accurately reconstruct cross sections of the human head. It is
believed that cross-sectional images of the human head are the
most sensitive to numerical inaccuracies and the presence of
artifacts induced by a reconstruction algorithm [6]. Other medical
images were Female, Head, and Heart. They are all generated by
commercial CT systems. The Random image (a white noise
image) should result in the upper bound on bit-widths required for
a precise reconstruction. The Artificial image is unique because it
contains all values in the 8-bit grayscale range. This image also
contains straight edges of rectangles, which induce more artifacts
in the reconstructed image. This is also characteristic of the Head
image, which contains a rectangular border around the head slice.

Figure 4 shows the detailed flowchart of the simulated CT
process. In addition to the major blocks designated as Reproject,
Filter and Backproject; Figure 4 also includes the different

Figure 3: Some of the images used as inputs to the simulation process

Figure 4: Detailed flowchart of the simulation process

quantization steps that we have investigated. Each path in this
flowchart represents a separate simulation cycle. Cycle 1 gives a
floating-point (FP) reconstruction of an input image. All other
cycles perform one or more type of quantization and their
resulting images are compared to the corresponding FP
reconstruction by computing the Relative Error. The first
quantization step converts FP projection data obtained by the
reprojection step to a fixed-point representation. Simulation cycle
2 is used to determine how different bit-widths for quantized
sinogram data affect the quality of a reconstructed image. Our
research was based on a prototype system that used 12-bit
accurate detectors for the acquisition of sinogram data.
Simulations showed that this bit-width is a good choice since
worst case introduced error amounts to 0.001%. The second
quantization step performs the conversion of filtered sinogram
data from FP to fixed-point representation. Simulation cycle 3 is
used to find the appropriate bit-width of the words representing a
filtered sinogram. Figure 5 shows the results for this cycle. Since
we use linear interpolation of projection values corresponding to

adjacent detectors, the interpolation factor in Equation (3) also has
to be quantized. Figure 6 summarizes results obtained from
simulation cycle 4, which is used to evaluate the error induced by
this quantization.

Figures 5 and 6 show the Relative Error metric for different
word length values for a number of input images. Some input
images were used in both 8-bit and 16-bit versions. Figure 5
corresponds to the quantization of filtered sinogram data (path 3
in Figure 4). The conclusion here is that 9-bit quantization is the
best choice since it gives considerably smaller error than 8-bit
quantization, which for some images induces visible artifacts. At
the same time 10-bit quantization does not give visible
improvement. The exceptions are images 7 and 8, which require
13 bits. From Figure 6 (path 4 in Figure 4), we conclude that 3-bit
words (meaning the maximal error for the spatial address is 2-4)
are sufficiently accurate. As expected, image 1 is more sensitive
to the precision of the linear interpolation because of its
randomness.

Figure 7: Bit reduction on the output of the interpolation multiplier

Figure 5: Simulation results for the quantization of
filtered sinogram data

Figure 6: Simulation results for the quantization of the
interpolation factor

We also investigated whether it is feasible to disregard some
of the least significant bits (LSBs) on outputs of functional units
(FUs) in the datapath and still not introduce any visible artifacts.
The goal is for the reconstructed pixel values to have the smallest
possible bit-widths. This is based on the intuition that bit
reduction done further down the datapath will introduce a smaller
amount of error in the result. If the same bit-width were obtained
by simply quantizing filtered projection data with fewer bits, the
error would be magnified by the operations performed in the
datapath, especially by the multiplication. Path number 5 in
Figure 4 symbolizes simulation cycles that investigate bit
reduction at outputs of three of the FUs. These FUs implement
subtraction, multiplication and addition that are all part of the
linear interpolation from Equation (3). When some LSBs are
discarded, the remaining part of a binary word can be rounded in
different ways. We investigate two different rounding schemes,
specifically rounding to nearest and truncation (or rounding to
floor). Rounding to nearest is expected to introduce the smallest
error, but requires additional logic resources. Truncation has no
resource requirements, but introduces a negative shift of values
representing reconstructed pixels. Bit reduction effectively
optimizes bit-widths of FUs that are downstream in the data flow.

Figure 7 shows tradeoffs of bit reduction and the two
rounding schemes after multiplication for medical images. It
should be noted that sinogram data are quantized to 12 bits,
filtered sinogram to 9 bits, and the interpolation factor is
quantized to 3 bits (2-4 precision). Similar studies were done for
the subtraction and addition operations and on a broader set of
images. It was determined that medical images suffer the least
amount of error introduced by combining quantizations and bit
reduction. For medical images, in case of rounding to nearest,
there is very little difference in the introduced error between 1 and
3 discarded bits after multiplication and addition. This difference
is higher in the case of bit reduction after addition because the
multiplication that follows magnifies the error. For all three FUs,
when only medical images are considered, there is a fixed
relationship between rounding to nearest and truncation. Two
least-significant bits discarded with rounding to nearest introduce
an error that is lower than or close to the error of 1 bit discarded
with truncation. Although rounding to nearest requires logic
resources, even when only one LSB is discarded with rounding to
nearest after each of three FUs, the overall resource consumption
is reduced because of savings provided by smaller FUs and
pipeline registers (see Figure 9 and 10). However, in our case
there was no need for using bit reduction to achieve smaller
resource consumption because the targeted FPGA chip
(Virtex1000) provided sufficient logic resources.

There is one more quantization issue we considered. It
pertains to data needed for the generation of the address into a
projection array (spatial address addr) and to the interpolation
factor. As described in the introduction, there are three different
sets of data stored in look-up tables (LUTs) that can be quantized.
Since pixels are being processed in raster-scan order, the spatial
address addr is generated by accumulating entries from LUTs 2
and 3 to the corresponding entry in LUT 1. The 10-bit integer part
of the address addr is the index into the projection array Πθ(·),
while its fractional part is the interpolation factor. By using radix
point-only scaling for the quantization of data in LUTs 1, 2 and 3,
the interpolation factor is the lower part of the word that
represents the generated address. Thus, it can conveniently be
extracted and fed to the multiplier that implements linear
interpolation. Since in simulations we are using a 3-bit

interpolation factor quantized by rounding to nearest with error of
up to 2-4, in hardware the spatial address addr should be
calculated with the same precision. The quantization error of the
data from the LUTs is accumulated as pixels are traversed. The
critical path for error accumulation is 512 pixels in the vertical
and 512 pixels in the horizontal direction, which corresponds to
the longest path from one image corner to the opposite one. This
results in entries in the first LUT requiring 10 integer and 5
fractional bits, entries in the second LUT having 1 integer bit and
15 fractional bits, and the third LUT having 2 integer and 15
fractional bits. Values stored in LUT 2 are all positive; their
representation does not need a sign bit. The MSB of an entry from
the third LUT is a sign bit. The address generated will have 15
fractional bits, which can be rounded to 4 bits (the interpolation
factor) by rounding to nearest. The total accumulated error in the
worst case is 2-6 + 512·2-16 + 512·2-16 + 2-5 which is equal to 2-4.
Another option is to discard the 10 least significant fractional bits
from the address to get 5 bits. This introduces the same maximal
error of 2-5

 as rounding to 4 bits, but the multiplier and all other
FUs in the datapath have to be wider and consume more logic
resources. It is thus more area effective to implement rounding to
nearest. It is important to note that the worst case quantization
error 2-4 for the interpolation factor used in simulations was the
same for all pixels, while in hardware it linearly increases from
the starting pixel and amounts to 2-4 for the last pixel.

4. HARDWARE ORGANIZATION
Hardware acceleration in reconfigurable hardware comes from
parallel processing. There are two basic sources of parallelism in
the backprojection algorithm. Pixel parallelism means that the
image can be divided into subsections (for example quadrants),
which can be reconstructed simultaneously. Projection parallelism
calculates the summation from Equation (2) by simultaneously
processing individual projections. If the number of pixels
reconstructed in parallel is N, then the memory bandwidth
required for the accumulation of reconstructions from different
projections is N times the bandwidth required for one pixel. Thus,
utilization of pixel parallelism is limited by the available memory
bandwidth. On the other hand, projection parallelism does not
require higher memory bandwidth than what is needed for the
non-parallel implementation. Therefore, we decided to base our
architecture primarily on projection parallelism.

Figure 8 shows a functional view of the particular hardware
implementation that is presented here. There are three flows of
data going on simultaneously that can be identified from this
diagram: pipeline flow, sinogram data flow, and accumulation
data flow.

The pipeline flow, which is horizontal in Fig. 8, consists of
seven blocks, each representing one stage of the pipeline. The
spatial address generation (SAG) is separated into two stages; the
first produces a spatial address for each pixel located outside of
the image and next to the leftmost image column. This is done
incrementally starting from the top pixel. For the spatial address
of the first pixel in each row to be obtained, the result of the first
SAG stage is passed to the second, which accumulates the
necessary horizontal (row) component of the address. Spatial
addresses for other pixels in the same row are then generated
incrementally in successive clock cycles. In the next stage, the
integer part of a spatial address is used to form memory addresses
of two adjacent sinogram values needed for linear interpolation,
and the fractional part is rounded to give the interpolation factor.

The fourth stage retrieves sinogram data from the on-chip
memory banks and aligns them to proper inputs of the subtracter
in the next stage, which starts performing linear interpolation.
Because the pipeline stages are balanced, the resources that
implement linear interpolation have been distributed into two
stages. Stage 7 completes the interpolation and accumulates the
result to the value for the same pixel reconstructed from previous
projections. The last stage stores this updated reconstruction into
an off-chip memory bank.

The sinogram data flow originates in one of the off-chip
memory banks, where projections are stored, and prefetches them
into on-chip memory banks. This flow of data always prefetches
the next projection to be processed and does that simultaneously
with processing the current projection in the pipeline flow.

The accumulation data flow (ADF) brings partially
reconstructed pixel values from an off-chip memory bank into the
sixth stage of the pipeline where accumulation with
reconstructions from new projections takes place. The ADF has to
be synchronized with the pipeline flow so that in each clock cycle
both flows in stage six correspond to the same pixel. This is
achieved through the pipeline stall mechanism.

Figure 9 shows the datapath of the non-parallel
backprojection hardware. Here, one pixel is reconstructed from
one projection every clock cycle. After reconstructing all pixels
from one projection, the next projection has already been loaded
and the reconstruction process continues. The first stage of the

pipeline stores a new value in the pipeline register once every 512
cycles, i.e. when processing of the next image row commences.
During the next cycle, the second stage passes the result of the
first SAG stage through its multiplexer to be accumulated with a
value from LUT 3 pointed to by the projection number.

A double buffering scheme is used for storing projections.
Each buffer is comprised of two blocks of on-chip RAM, one
storing odd addressed projection data, and the other storing even
addressed data. These buffers represent the boundary between
pipeline stages 3 and 4. While one projection is being processed
from one of the buffers, the next is being loaded into the other.
With every new projection, the buffers switch their roles.

When the reconstruction process is initiated, the first 512
cycles are used to load the first projection that corresponds to the
first rotational angle of the source-detector system. After that,
processing and fetching are overlapped. The filtered and
quantized sinogram is stored in one off-chip memory bank
(Mezzanine RAM). Each memory word contains two consecutive
projection samples.

For the purpose of performing linear interpolation, two
projection values with indices  addr and  addr , where addr is
the spatial address, have to be available from the processed
projection in a single clock cycle. Having separate odd and even
on-chip RAM blocks, which can be read at the same time, makes
this requirement possible. If  addr is an odd number, the
projection value that corresponds to this number is located in the

Figure 9: Datapath implementation of the non-parallel backprojection hardware

ODD
RAMODD

RAM

EVEN
RAM

S
U

BPROJECTION
COUNTER

M
U

X

A
D

D

ROUND

M
U

X

LOCAL
RAM

15

16

25
25

25
25

25

17

5 4

9

9

10

9

9

10

14

13

15
10

MEZZANINE
RAM

 9

9

S
U

B

LUT 3

LUT 2

LUT 1

LOCAL
RAM

M
U

L
T

A
D

DA
D

D

25

25

WRITE
ADDRESS
COUNTER

D
E

M
U

X EVEN
RAM

M
U

X
M

U
X

S
W

A
P

Figure 8: Data flow of the backprojection hardware

odd RAM block at address  addr -1, and the next adjacent

projection value is in the even block at address  addr . If  addr
is an even number, corresponding projection data are at address
 addr -1 in both even and odd memory blocks, except for

 addr = 0 when both addresses are also 0. The formation of
these addresses and their distribution to memory blocks is
implemented in the functional unit designated demux. Out of two
adjacent projection values that are linearly interpolated, the higher
address ( addr) should always be fed to the in1 input of the
subtracter, which performs the operation in1 – in2. This projection
value can come from either the even or the odd memory block.
The unit swap takes care of this in stage 4.

Stage 5 and the first adder from stage 6 implement linear
interpolation. The second adder in stage 6 accumulates the value
of the same pixel reconstructed from previously processed
projections with the interpolation result. The result is then stored
for future accumulation.

Two off-chip memory banks (local RAMs in Figure 9) store
intermediate results of the accumulation for each pixel. Both are
used interchangeably as sources and destinations. Every time a
new projection is processed, the local RAM that was a destination
for the last addition in stage 6 switches its role to a source, and the
one that was a source becomes a destination. Thus, a pixel’s
current reconstruction can be read and a new one stored at the
same address in a single clock cycle.

Since local RAM responds to the initial read request with a
delay of several clock cycles, every time processing of a new
projection starts, the pipeline has to be stalled until the ADF and

pipeline flow are synchronized. The two registers inserted in the
ADF enable detection of valid data coming from the source local
RAM and give enough time for the control unit to stall or
reactivate the pipeline.

The same basic principles of operation apply to the 4-way
parallel architecture whose datapath is shown in Figure 10. The
main difference is that this architecture processes 4 projections
simultaneously. This requires replication of most pipeline
resources so that pipeline flow is quadrupled. The LUTs are
reorganized into 4 smaller units that together store the same data.
The addition tree in stage 6 sums the reconstructions from each of
4 projections and the last adder in this stage accumulates this
value with previous results for the same pixel. Since 4 projections
are being loaded in parallel for 512 cycles, two Mezzanine RAM
banks are required to store sinogram data to achieve the required
bandwidth. From each bank, 4 projection samples are loaded
separately into even and odd on-chip buffer banks. This makes the
bandwidth of the sinogram data flow 4 times higher than in the
non-parallel case. However, if instead of loading all 4 projections
in 512 cycles, this task is extended to last 2048 cycles, the
required bandwidth would not need to be increased. The
processing of one set of projections takes 5122 cycles, which gives
as many cycles for the prefetch of the next set to be completed.
Only the loading of the first set of projections, which is not
overlapped with processing, would affect the total execution time.

More projection parallelism can be extracted by processing
more than four projections at the same time. This would require
further replication of functional units and a larger addition tree in
stage 6. The problem would be that the addition tree might not fit
in a single pipeline stage. This is easily solved without adding a

S
U

B

ROUND

ROUND

ROUND

S
U

B
S

U
B

LUT 3.1

LUT 3.2

LUT 2.1

LUT 2.2

LUT 1.1

LUT 1.2

LUT 4.1

LUT 4.2

EVEN
WRITE

COUNTER ODD
WRITE

COUNTER

ODD
RAMODD

RAM

EVEN
RAMEVEN

RAM

ODD
RAMODD

RAM

EVEN
RAMEVEN

RAM

ODD
RAMODD

RAM

EVEN
RAMEVEN

RAM

ODD
RAMODD

RAM

EVEN
RAMEVEN

RAM

S
U

B

S
U

B
S

U
B

S
U

B
S

U
B M

U
L

T
M

U
LT

M
U

LT
M

U
LT

A
D

D

PROJECTION
COUNTER

M
U

X

A
D

D

LUT 1.3

M
U

X

A
D

D

LUT 2.3

M
U

X

A
D

D

LUT 3.3

M
U

X

A
D

D

LUT 4.3

D
E

M
U

X

ROUND

D
E

M
U

X
D

E
M

U
X

D
E

M
U

X

M
U

X
M

U
X

M
U

X
M

U
X

S
W

A
P

M
U

X
M

U
X

S
W

A
P

M
U

X
M

U
X

S
W

A
P

M
U

X
M

U
X

S
W

A
P

M
U

X
M

U
X

A
D

D

A
D

D
A

D
D

A
D

D

A
D

D
A

D
D

A
D

D LOCAL
RAM

LOCAL
RAM

15

16

25
25

25
25

25

17

5 4

9

9

10

9

9

10

14

13 15

16

17

25

25

9

9

8

LEFT
MEZZANINE

RAM

RIGHT
MEZZANINE

RAM

4 9

4 9

Figure 10: Datapath of the implemented 4-way parallel backprojection hardware

new stage by spilling excess units into stage 7, which (see Figure
10) is almost empty. The main limiting factor for extracting
further parallelism is the amount of on-chip RAM. Our
implementation uses the entire RAM available on the targeted
FPGA chip (Xilinx Virtex1000), and 21% of logic resources.
There are other similar FPGAs currently available, with larger
RAM capacity, which can accommodate more than 4-way parallel
implementations.

Theoretically, it would be possible to eliminate the use of on-
chip RAM completely, and access sinogram data directly from
off-chip memory, but there are some practical considerations that
render this approach less desirable. The number of available
memory banks, response time of the memory, number of I/O pins,
increased access latency, increased cost in logic resources for
control, and higher overall complexity of the design are some of
the factors that would make such a solution inferior in terms of
performance. Supplementing on-chip with off-chip memory
would alleviate some of these difficulties, but that was not
possible to implement in our case since we already used all the
available memory banks. There is a possibility of using excess
logic resources (look-up tables) of the chip to build additional
RAM banks and thus make more parallelism extraction possible.
However, this would significantly increase complexity of the
design, making efficient place and route difficult, which could
cause a large decrease in the clock frequency.

5. RESULTS AND PERFORMANCE
We have implemented parallel-beam backprojection on an
Annapolis Micro Systems Wildstar board using one Xilinx
Virtex1000 FPGA chip.

Figure 11 summarizes our performance results by comparing
backprojection execution times in seconds for software and
hardware implementations. The software implementation
performs all calculations on integer values obtained after the
quantizations have been performed (to be similar to the hardware
implementation). The hardware implementation labeled as test
case D is the 4-way parallel version (Figure 10), while C denotes
the non-parallel version shown in Figure 9.

Figure 12 shows a section from the test image Heart on the
left-hand side and the same section from its hardware
reconstruction on the right hand side. The mapping between the
grayscale range and the pixel value range was manually adjusted
to show the image in more detail.

6. RELATED WORK
 Agi et. al.[1] present the only description of a hardware solution
for computerized tomography of which we are aware. It is a
unified architecture that implements forward Radon transform,
parallel- and fan-beam backprojection in an ASIC based multi-
processor system. Our FPGA implementation focuses on
backprojection. Agi et al. [2] present a similar investigation of

Original image Hardware output image

Figure 12: Image comparison – grayscale range mapped to a part of the pixel value range

Figure 11: Performance results – Software vs. Hardware

quantization effects; however their results do not demonstrate the
suitability of their implementation for medical applications.
Although their filtered sinogram data are quantized with 12-bit
precision, extensive bit truncation on FU outputs and low
accuracy of the interpolation factor (absolute error of up to 2)
render this implementation significantly less accurate than ours,
which is based on 9-bit projections and the maximal interpolation
factor absolute error of 2-4. There have been many papers
applying reconfigurable hardware to image processing. Bins et.
al.[4] have investigated precision vs. error in JPEG compression.
The goals of this research are very similar to ours: to implement
designs in fixed-point in order to maximize parallelism and area
utilization. JPEG compression is an application that can tolerate a
great deal more error than medical imaging.

7. CONCLUSION
We have presented an FPGA implementation of the parallel-beam
backprojection algorithm optimized for medical imaging. We
have based our implementation on the analysis of quantization
effects caused by finite bit-widths, and paid special attention not
to compromise the high precision requirements of medical
imaging. Our solution shows a 20 times speed-up over a similar
software implementation. The combined effect of our
quantizations result in a worst case relative error of 0.015%
compared to a floating-point implementation. Real-time image
reconstruction is easily attainable by exploiting the inherent
parallelism of our solution to utilize resources of larger FPGA

devices. The hardware architecture presented can easily be
modified to different bit-widths in order to accommodate different
sensors and applications.

8. REFERENCES
[1] Agi, I., Hurst, P.J., and Current, K.W. An image processing

IC for backprojection and spatial histogramming in a
pipelined array, in IEEE journal of solid-state circuits, vol.
28, no. 3, (1993), 210-221.

[2] Agi, I., Hurst, P.J., and Current, K.W. A VLSI architecture
for high-speed image reconstruction: considerations for a
fixed-point architecture, in Proceedings of SPIE, Parallel
Architectures for Image Processing, vol. 1246, (1990).

[3] Basu, S., and Bresler, Y. O(N2log2N) filtered backprojection
reconstruction algorithm for tomography, in Transactions of
IEEE, Image Processing, vol. 9, no. 10, (October 2000).

[4] Bins, J., Draper, B., Bohm, W., and Najjar, W. Precision vs.
Error in JPEG Compression. Parrallel and Distributed
Methods for Image Processing III (SPIE), Denver CO, (July
22, 1999), 76-87.

[5] Joseph, P.M. An improved algorithm for reprojecting rays
through pixel images, in Transactions of IEEE, Medical
Imaging, vol. MI-1, no. 3, (November 1982).

[6] Kak, A.C., and Slaney, M. Principles of Computerized
Tomographic Imaging, (New York, 1988), IEEE Press.

	Main Page
	FPGA02
	Front Matter
	Table of Contents
	Session Index
	Author Index

