UART 16550 COMPATIBLE MACRO

Product Description 1.0

Features

- Fully Programmable Baud Rate Generator
- Fully Programmable Transmission Interface. 5-,6-,7- or 8 bit character's
- Even / Odd, Stick Parity or No Parity Generation
- One or Two Stop Bits
- In the FIFO mode transmitter and receiver are each buffered with 16 byte FIFOs
- DMA signaling is available through two pins TXRDY_L and RXRDY_L.
- Indepedent receiver clock input
- False start bit detection
- Line Break Generation and Detection
- Status reporting capabilies
- Independently controlled transmit, receive, line status and data interrupts
- Modem control functions [CTS, RTS, DSR, DTR, RI, DCD]
- Supports fully prioritized Interrupt
 Control System
- Easy interface to microprocessors

Facts				
UART 16550 Compatible Macro				
Core Specifics				
	2	XC4010XL		
CLBs Used		383		
IOBs Used	42			
Serial Clock	Upto 10 MHZ			
Supported Devices				
	I/O	CLBs		
XC4010XL PC84	40	163		
Design Tool Requirements				
Xilinx Core Tools		M1 1.4		
Entry/Verification Tools	Ν	NodelTech		
Synthesis Tools	Synplicity Synplify			

Potential Applications

RS232 Communications Serial Interface to Microcontrollers Serial Interface to LCD controller Modem Interface

Recommended Design Experience

Knowledge of Asynchronous Communication. Familiarity with HDL design Methodology in a hierarchical design environment.

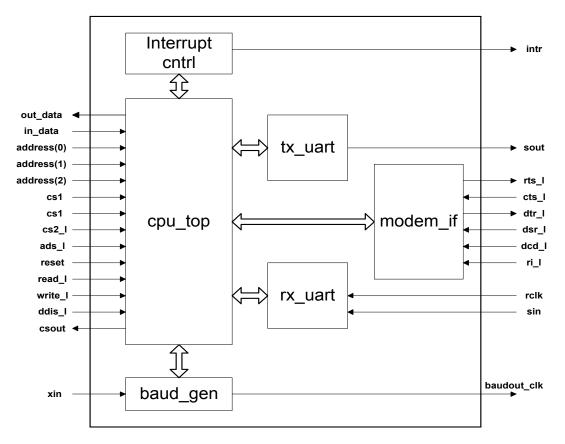


Figure 1. 16550 Compatible UART Block Diagram

General Description

The UART Macro is divided in six submodules. Each can be optimized depending upon the target application. The CPU interface can be optimized depending upon the type of microcontroller interface required.

Functional Description

Cpu_top Module

This module interfaces to parallel bus/ microcontroller and generates chipselects and read/write signals for internal UART registers. This module can be customized to any asynchronous/synchronous bus interface.

Tx_uart Module

This Module converts parallel data to serial according to the serial format programmed in the LCR register and transmits over a serial line.

Rx_uart Module

This module receives serial data and converts it to parallel data. The data received is stored in the buffer. In 16550 mode the rx_uart module can buffer upto 16 bytes of the data. The FIFO size is programmable and can be increased for maximum throughput.

Modem_if module

This module provides interface to modem signals.

Baud_gen module

The baud_gen module generates the required baud for transmitting the data.

Core Modifications

The 16550 compatible macro core design is modular, making modifications is relatively simple. If you are interested in obtaining a version of the core that is different from this product description, then contact Comit Systems directly. Comit Systems can provide custom version of core, including the changes in microprocessor interface, changes in line interface and adding the additional features required.

Pinouts

The pinout of the UART has not been fixed to specific FPGA I/O allowing flexibility with user application. The signal names are provided in the Table 1 below.

Signal Name	Туре	Description
Reset	Input	Global reset signal
Address	Input	Address lines. address(0), address(1) and address(2) are three inputs used during Read rd_I and Write wr_I operations to read from or write into to select the ACE register [from internal Register Bank].
In_data	Input	in_data(7-0) and out_data(7-0) are the unidirectional input and output data lines that provide out_data(7-0) a bidirectional path for data, control and status information between the ACE and the CPU.
ads_l	Input	Address Strobe. The positive edge of the ads_I signal latches the ACE Register select (address 0 - 2) and Chip Select (cs0,cs1,cs2_I) signals
Read_I	Input	When read_I is low while the core is read_I Input selected, the CPU can read status information or data from the selected UART registers [register bank].
write_l	Input	When write_I is low while the core is write_I Input selected, the CPU can write control words or data into the selected UART registers [register bank].
cs0	Input	Output to the tx_uart block which indicates that transmitter holding register is full.
cs1	Input	Chip Select. When cs0 , cs1 are high and cs2_I low , the ACE is selected.
cs2_l	Input	Chip Select. When cs0 , cs1 are high and cs2_I low , the ACE is selected.
cts_I	Input	cts_I is a modem status signal. Its condition can be checked by reading bit 4 of the modem status register. Bit 0 of the modem status cts_I . Input register indicates that this signal had changed state since the last read from the modem status register. It the modemstatus interrupt is enabled when cts_I changes state, an interrupt is generated.

Signal Name	Туре	Description
Dcd_I	Input	dcd_l is a modem status signal. Its condition can be checked by reading bit 7 of the modem status register. Bit 3 of the modem status register indicates that this signal had changed state since the last read from the modem status register. It the modemstatus interrupt is enabled when dcd_l changes state, an interrupt is generated.
ddis_l	Input	when the CPU is not reading data. This output can be used to disable the drivers.
Dsr_I	Output	dsr_l is a modem status signal. Its condition can be checked by reading bit 5 of the modem status register. Bit 1 of the modem status register indicates that this signal had changed state since the last read from the modem status register. It the modem status interrupt is enabled when dsr_l changes state, an interrupt is generated.
Dtr_I	Output	Data terminal ready. When asserted, dtr_I informs a modem or a data set that the ACE is ready to establish communication. dtr_I is placed in active state by setting DTR bit of the modem control register to a high level. dtr_I is deasserted by clearing DTR bit of the modem control register.
Out_data	Output	in_data(7-0) and out_data(7-0) are the unidirectional input and output data lines that provide out_data(7-0) a bidirectional path for data, control and status information between the ACE and the CPU.
Intr	Output	This pin goes high when whenever any one of the following interrupt types has an active high condition and is enabled via the IER. Receiver Error Flag, Received Data Available, Transmitter Holding Register Empty, and Modem Status. The INTR signal is reset low upon the appropriate interrupt service or a Master Reset Operation.
Rclk	Input	Receive Clock. This input is the 16 X baud rate clock for the receiver section of the chip.
Ri_l	Input	When low this indicates that the telephone ringing signal has been received by the Modem. The ri_l signal is a Modem Status input whose condition can be tested by the CPU reading bit 6(RI) of the Modem Status Register. Bit 6 is the compliment of the ri_l signal. Bit 2 of the Modem Status Register the endicates whether the

Signal	Tuno	Description
Signal Name	Туре	Description
		ri_l input signal has changed from
		a low to a high state since the
		previous reading of the Modem
		Status Register.
Rts_I	Input	Request to Send. When low this
		informs the Modem or Data Set
		that the UART is ready to
		exchange data. The rts_I output
		can be set to an active low by programming bit 1 (RTS) of the
		Modem Control Register.
sin	Input	Serial input. Serial Data Input
		from the communications link
		(peripheral device, Modem or
		Data Set).
sout	Output	Serial Output. Composite serial
		data output to the communicatins
		link (peripheral, Modem or data
		set). The SOUT signal is set to
		the Marking Logic 1 state upon a Master Reset Operation.
xin	Input	External Crystal Input.
csout	Output	Chip Select Out. When asserted, indicates the core has been
		selected by assertion of the chip
		select inputs.
Txrdy_l	Output	In 16450 mode(FCR0 = 0),or
		FIFO mode0(FCR0=1 ,FCR3=0),
		and there are no characters in Tx
		FIFO, this pin is low active. It sets
		high after the first character is
		loaded into theXMIT FIFO or
		holding register.
		In FIFO mode1 this pin will be
		low active when there are no characters in Tx FIFO.This pin
		will become inactive when XMIT
		FIFO is completely full.
Rxrdy I	Output	When in 16450 mode(FCR0=0,
		or in FIFO
		mode0(FCR0=1,FCR3=0), if
		there is at least one character in
		the Rx FIFO or Rx holding
		register, the RXRDY pin will be
		low active. It goes inactive when
		there are no more characters in
		the FIFO or holding register.
		Mode1(FCR0=1,FCR3=1),when
		triger level or timeout interrupt
		has been reached, the rxrdy_l pin
		will go low active.Once
		activated, it will go inactive when
		there are no more characters in
		the FIFO.

Verification Models

The 16550 compatible UART has been extensively tested using the testbench developed at Comit Systems. The test bench is also available with the core.

Comit Systems, Inc. 3375 Scott Blvd. Ste 139 Santa Clara, CA 95054, USA. Phone: +1 (408) 988-2988

URL: http://www.comit.com

FOR MORE INFORMATION CLICK THE REQUEST QUOTE LINK ON WEBSITE