UART 16450 COMPATIBLE MACRO

Product Description 1.0

Features

- Fully Programmable Baud Rate Generator
- Fully Programmable Transmission Interface. 5-,6-,7- or 8 bit character's
- Even / Odd, Stick Parity or No Parity Generation
- One or Two Stop Bits
- Independent receiver clock input
- False start bit detection
- Line Break Generation and Detection
- Status reporting capabilities
- Independently controlled transmit, receive, line status and data interrupts
- Modem control functions [CTS, RTS, DSR, DTR, RI, DCD]
- Supports fully prioritized Interrupt Control System
- Easy interface to microprocessors.

Facts				
UART 16450 Compatible Macro				
Core Specifics				
	2	XC4010XL		
CLBs Used		163		
IOBs Used	40			
Serial Clock	Upto 30 MHZ			
Supported Devices				
	I/O	CLBs		
XC4010XL PQ100	40	163		
Design Tool Requirements				
Xilinx Core Tools	M1 1.4			
Entry/Verification Tools	N	ModelTech		
Synthesis Tools	Synplicity Synplify			

Potential Applications

RS232 Communications Serial Interface to Microcontrollers Serial Interface to LCD controller Modem Interface

Recommended Design Experience

Knowledge of Asynchronous Communication. Familiarity with HDL design Methodology in a hierarchical design environment.

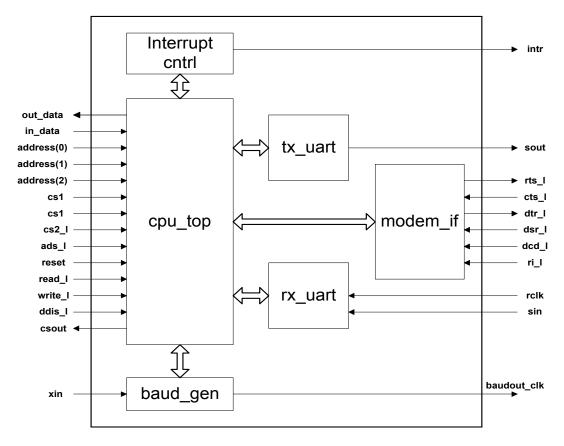


Figure 1. 16450 Compatible UART Block Diagram

General Description

The UART Macro is divided in six submodules. Each can be optimized depending upon the target application. The CPU interface can be optimized depending upon the type of microcontroller interface required.

Functional Description

Cpu_top Module

This module interfaces to parallel bus/ microcontroller and generates chipselects and read/write signals for internal UART registers. This module can be customized to any asynchronous/synchronous bus interface.

Tx_uart Module

This Module converts parallel data to serial according to the serial format programmed in the LCR register and transmits over a serial line.

Rx_uart Module

This module receives serial data and converts it to parallel data. The data received is stored in the buffer.

Modem_if module

This module provides interface to modem signals.

Baud_gen module

The baud_gen module generates the required baud for transmitting the data.

Core Modifications

The 16450 compatible macro core design is modular, making modifications is relatively simple. If you are interested in obtaining a version of the core that is different from this product description, then contact Comit Systems directly. Comit Systems can provide custom version of core, including the changes in microprocessor interface, changes in line interface and adding the additional features required.

Pinouts

The pinout of the UART has not been fixed to specific FPGA I/O allowing flexibility with user application. The signal names are provided in the Table 1 below.

Signal Name	Туре	Description
Reset	Input	Global reset signal
Address	Input	Address lines. address(0), address(1) and address(2) are three inputs used during Read rd_I and Write wr_I operations to read from or write into to select the ACE register [from internal Register Bank].
In_data	Input	in_data(7-0) and out_data(7-0) are the unidirectional input and output data lines that provide out_data(7-0) a bidirectional path for data, control and status information between the ACE and the CPU.
ads_I	Input	Address Strobe. The positive edge of the ads_I signal latches the ACE Register select (address 0 - 2) and Chip Select (cs0,cs1,cs2_I) signals
Read_I	Input	When read_I is low while the core is read_I input selected, the CPU can read status information or data from the selected UART registers [register bank].
write_I	Input	When write_I is low while the core is write_I input selected, the CPU can write control words or data into the selected UART registers [register bank].
cs0	Input	Output to the tx_uart block which indicates that transmitter holding register is full.
cs1	Input	Chip Select. When cs0 , cs1 are high and cs2_I low , the ACE is selected.
cs2_l	Input	Chip Select. When cs0 , cs1 are high and cs2_I low , the ACE is selected.
cts_I	Input	cts_I is a modem status signal. Its condition can be checked by reading bit 4 of the modem status register. Bit 0 of the modem status cts_I . Input register indicates that this signal had changed state since the last read from the modem status register. It the modemstatus interrupt is enabled when cts_I changes state, an interrupt is generated.
Dcd_I	Input	dcd_l is a modem status signal. Its condition can be

Signal Name	Туре	Description
		checked by reading bit 7 of the modem status register. Bit 3 of the modem status register indicates that this signal had
		changed state since the last read from the modem status register. It the modemstatus
		interrupt is enabled when dcd_I changes state, an interrupt is generated.
ddis_l	Input	when the CPU is not reading data. This output can be used to disable the drivers.
Dsr_I	Output	dsr_l is a modem status signal. Its condition can be checked by reading bit 5 of the modem status register. Bit 1 of the modem status register indicates that this signal had changed state since the last read from the modem status register. It the modem status interrupt is enabled when dsr_l changes state, an interrupt is
Dtr_I	Output	generated. Data terminal ready. When asserted, dtr_l informs a modem or a data set that the ACE is ready to establish communication. dtr_l is placed in active state by setting DTR bit of the modem control register to a high level. dtr_l is deasserted by clearing DTR bit of the modem control register.
Out_data	Output	in_data(7-0) and out_data(7-0) are the unidirectional input and output data lines that provide out_data(7-0) a bidirectional path for data, control and status information between the ACE and the CPU.
Intr	Output	This pin goes high when whenever any one of the following interrupt types has an active high condition and is enabled via the IER. Receiver Error Flag, Received Data Available, Transmitter Holding Register Empty, and Modem Status. The INTR signal is reset low upon the appropriate interrupt service or a Master Reset Operation.
Rclk	Input	Receive Clock. This input is the 16 X baud rate clock for the receiver section of the chip.
Ri_I	Input	When low this indicates that the telephone ringing signal has been received by the Modem. The ri_I signal is a Modem Status input whose condition can be tested by the CPU reading bit 6(RI) of the Modem Status Register. Bit 6 is the compliment of the ri_I

Signal Name	Type	Description
Name		signal Pit 2 of the Modern
		signal. Bit 2 of the Modem Status Register indicates whether the ri_l input signal has changed from a low to a high state since the previous reading of the Modem Status Register.
Rts_I	Input	Request to Send. When low this informs the Modem or Data Set that the UART is ready to exchange data. The rts_I output can be set to an active low by programming bit 1 (RTS) of the Modem Control Register.
sin	Input	Serial input. Serial Data Input from the communications link (peripheral device, Modem or Data Set).
sout	Output	Serial Output. Composite serial data output to the communications link (peripheral, Modem or data set). The SOUT signal is set to the Marking Logic 1 state upon a Master Reset Operation.
xin	Input	External Crystal Input.
csout	Output	Chip Select Out. When asserted, indicates the core has been selected by assertion of the chip select inputs.

Verification Models

The 16450 compatible UART has been extensively tested using the testbench developed at Comit Systems. The test bench is also available with the core.

Comit Systems, Inc. 3375 Scott Blvd. Ste 139 Santa Clara, CA 95054, USA. Phone: +1 (408) 988-2988

URL: http://www.comit.com

FOR MORE INFORMATION CLICK THE REQUEST QUOTE LINK ON WEBSITE