Single Channel HDLC Controller

Product Description 1.0

Features

- Fully Compliant to ISO 3309 specifications
- HDLC ISO / OSI Layer 2 functions including:
 - Flag, Idle and Abort Generation / Detection
 - Zero Deletion / Insertion
- Operates up to 4 Mbps
- Serial Line Interface
- NRZ / NRZI Encoding and Decoding
- Supports Modem Control Signals (RTS, CTS and CD)
- CRC-16 / CRC-32 Generation and Checking
- CRC Disable Control
- Interface for Two External FIFOs (64 x 9 bit)
- Terminal Data Loop Back Facility
- Transparent Mode
- Supports Shared Opening and Closing flags
 between Frames
- Supports Idle and Flags in Interframe-time-fill
- Includes following Error Detection capabilities:
 - Abort / CRC Error
 - Non-octet frame Content

AllianceCORE Facts Single Channel HDLC Controller				
Core Sp	ecifics			
		XC4000E		
CLBs Used	214			
IOBs Used	50			
Serial Clock	4MHZ			
Device Features used	3-state buses			
Supported	Devices			
	I/O	CLBs		
XC4006E-3 PC84	50	214		
Provided w	vith Core			
Documentation	Core Documentation XC4000E Datasheets			
Design File Formats	VHDL Source code			
Verification Tool	ModelTech V-System Tools			
Schematic Symbols	None			
Constraint Files	Time Spec. Files			
Evaluation Model	None			
Reference Designs &	None			
Application notes				
Design Tool Requirements				
Xilinx Core Tools	XACT step			
Entry/Verification Tools	ModelTech	V-System Tools		
Synthesis Tools	Synopsys Design Compiler			
Support				
Support provided by Comit Systems, Inc.				

Potential Applications

- Embedded applications in Telecommunication Systems
- Applications in X.25, LAPB and ISDN LAPD Communication Systems
- Applications in point to point Communication
 Links

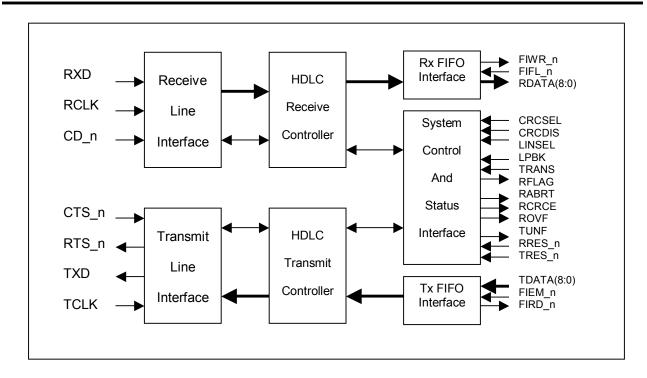


Figure 1. Single Channel HDLC Controller Block Diagram

Recommended Design Experience

Knowledge of HDLC specification is required. The user must be familiar with HDL design methodology in a hierarchical design environment.

General Description

The HDLC Controller is flexible and the interfaces can be customized for any microcontroller based applications. The core includes the functionality for a complete HDLC controller.

Functional Description

The HDLC controller core is partitioned into seven modules as shown in Figure 1 and described below.

Receive Line Interface

The Receive Line Interface handles NRZI decoding and active clock selection for HDLC receive operation.

HDLC Receive Controller

The HDLC Receive Controller handles Flag detection, Abort detection, Idle detection, Zero deletion, CRC Checking and Serial to parallel conversion of receive data.

RxFIFO Interface

The RxFIFO Interface handles the write FIFO accesses, end of frame detection and FIFO overflow error.

System Status and Control Interface

The System Status and Control Interface consists of General control interface, Receive control interface and Transmit control interface. The General control interface handles CRC polynomial selection, CRC enable control, Line encoding scheme selection, Loopback mode control and transparent mode control. The Receive control interface handles receive clock selection, receive reset and receive status/error indications. The transmit control interface handles transmit clock selection, transmit reset and transmit status/error indications.

TxFIFO Interface

The TxFIFO Interface handles the read FIFO accesses and FIFO underflow error.

HDLC Transmit Controller

The HDLC Transmit Controller handles parallel to serial conversion, CRC generation, Zero insertion (bit stuffing), abort generation and flag insertion.

Transmit Line Interface

The Transmit Line Interface handles NRZI encoding and active clock selection for HDLC transmit operation.

Core Modifications

The single channel HDLC controller core design is modular, making modifications is relatively simple. If you are interested in obtaining a version of the core that is different from this product description, then contact Comit Systems directly. Comit Systems can provide custom version of core, including the changes in microprocessor interface, changes in line interface and adding the additional features required.

Pinout

The pinoout of the HDLC controller has not been fixed to specific FPGA I/O allowing flexibility with user application. The signal names are provided in the Table 1 below.

Signal	Signal Direction	Package Pin	Description				
	Line Interface Signals						
RXD	Input	I/O	Receive Serial				
			Data				
RCLK	Input	I/O	Receive clock				
CD_n	Input	I/O	Carrier Detect				
TXD	Output	I/O	Transmit serial				
			Data				
TCLK	Input	I/O	Transmit Clock				
RTS_n	Output	I/O	Request to Send				
CTS_n	Input	I/O	Clear to Send				
FIFO Interface Signals							
FIWR_n	Output	I/O	FIFO Write				
FIFL_n	Input	I/O	FIFO Full				
RDATA[8:0]	Output	I/O	Receive Data				
FIRD_n	Output	I/O	FIFO Read				
FIEM_n	Input	I/O	FIFO Empty				
TDATA[8:0]	Input	I/O	Transmit Data				

System Control and Status Signals				
CRCSEL	Input	I/O	CRC Select	
CRCDIS	Input	I/O	CRC Disable	
LINSEL	Input	I/O	Line Code Selec-	
			tion	
LPBK	Input	I/O	Loop back	
TRANS	Input	I/O	Transparent mode	
RRES_n	Input	I/O	Receive Reset	
RCINV_n	Input	I/O	Receive Clock	
			invert	
RXF_n	Output	I/O	Receiving Frames	
RFLAG	Output	I/O	Receive Flag	
RABRT	Output	I/O	Receive Abort	
RIDLE	Output	I/O	Receive Idle	
RCRCE	Output	I/O	Receive CRC Error	
ROVF	Output	I/O	Receive overflow	
CDLE	Output	I/O	Carrier Detect Lost	
			Error	
TRES_n	Input	I/O	Transmit Reset	
TCINV_n	Input	I/O	Transmit Clock	
			Invert	
TXF_n	Output	I/O	Transmitting	
TEL 10			Frames	
TFLAG	Output	I/O	Transmit Flag Indication	
TABRT	Output	I/O	Transmit Abort	
			Indication	
TUNF	Output	I/O	Transmit Under-	
			flow	
CTSLE	Output	I/O	Clear To Send	
			Lost Error	
CTSLE	Output	I/O	Clear To Send	
			Lost Error	

Verification methods

The single channel HDLC controller has been tested extensively using the testbench developed at Comit Systems. The testbench is also available with the core.

Comit Systems, Inc. Comit Systems, Inc. 3375 Scott Blvd. Ste 139 Santa Clara, CA 95054, USA. Phone: +1 (408) 988-2988

URL: http://www.comit.com

FOR MORE INFORMATION CLICK THE REQUEST QUOTE LINK ON WEBSITE